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ABSTRACT 

 
      The Canadian Standards Association [1] has developed and 
published a code for the design and construction of fixed offshore 
structures.  One of the limit states  relates to the combined effects 
of waves and iceberg collision loading.  The Code uses a load 
combination factor to determine the design load effect. The 
present paper describes a recent study on the appropriateness of 
the recommended value of the combination factor.  The study 
involves a numerical analysis in which loads have been 
calculated, at different probability levels, for a range of iceberg 
and wave parameters, considering waves alone, an iceberg alone, 
and an iceberg and waves in combination,. The paper thereby 
makes recommendations for the load combination factor as a 
function of iceberg and sea state parameters. 
 
INTRODUCTION 

 
      The selection of suitable environmental loads and load events 
is of critical importance in the design of offshore structures in 
extreme environments.  Such loads may include effects of wind, 
 

waves, earthquakes, ice and iceberg collisions.  The CSA 
Offshore Structures Code CAN/CSA-S471-92(S471) [1] , that is 
currently in use, indicates the use of probabilistic methods on 
which the selection of load events and design loads should be 
based.    One of the important limit states is the combined effect 
of wave and iceberg collision loading. This is treated by the use 
of a load combination factor specified in the Code.  The present 
paper describes a recent study that was undertaken to determine 
the appropriateness of  Code recommendations. 
Wave-structure interactions (in the absence of icebergs) has been 
studied extensively (e.g., [2]).  In the case of large offshore 
structures, linear diffraction wave theory is generally used to 
calculate wave loads.  This is based on the assumption of 
potential flow theory, a horizontal seabed and small amplitude 
waves.  Structures of arbitrary shape are usually treated by a 
boundary element method in which the submerged surface of the 
structure is specified in discretized form.  Iceberg-structure 
interactions (in the absence of waves) have also been studied 
extensively, and an overview of this topic has been given by 
Cammaert and Muggeridge [3].  In general, the maximum iceberg 
load on a structure is obtained by an energy balance in which the 
initial kinetic energy of the iceberg is equated to the energy 
dissipated through ice crushing up to the time the iceberg is 
brought to rest.  Topics of particular interest in this regard include 
the consideration of energy dissipation through structural damage 
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or ductility, and an assessment of the importance of size (area) 
effects on the ice-crushing pressure. 
Wave effects on iceberg motions and the case of waves and an 
iceberg acting simultaneously on an offshore structure have also 
been widely studied, although perhaps not to the same extent.  
Particular aspects which have been considered include wave-
induced iceberg motions (e.g. [4] and [5]), iceberg interactions 
with semi-submersible rigs (e.g. [6] and [7]), and iceberg motions 
near a large structure (e.g. [8] and [9]).  Isaacson [8] considered 
the effect of waves on an iceberg up to the instant of impact with 
a large structure, and described a numerical model for evaluating 
iceberg drift motions in order to provide an assessment of wave 
effects on the iceberg velocity and effective mass at the time of 
impact. 
The present paper describes a numerical analysis in which loads 
due to waves alone, an iceberg alone, and an iceberg and waves 
in combination, have been calculated for a range of iceberg and 
wave parameters.  These results have been used to develop 
expressions for wave and iceberg loads which are then used in a 
probabilistic study of the load event.  The probability assessment is 
based on the first-order reliability method (FORM). As a case 
study, the paper analyses conditions similar to those of the 
Hibernia platform located in the Grand Banks off the 
Newfoundland coast.  This platform is a gravity-based reinforced 
concrete structure, protected from iceberg impact by a concrete 
cylindrical wall.  In this study, the structure is assumed to be a 
vertical circular cylinder of radius a = 58 m located in a water 
depth d = 80 m. 
 

PROBABILISTIC FRAMEWORK 

Probabilistic analyses have previously been used in offshore 
engineering problems (e.g. [10], [11] and [12]) including the 
calibration of the Canadian Code for offshore structures [13].  In 
the present study, however, the probabilistic framework includes 
the formulation of detailed mechanical and hydrodynamic models 
for the interaction of waves and icebergs during a collision.  
Thus, in what follows, a detailed description is given on the 
approaches used to assess the loads due to waves alone, an 
iceberg alone, and waves and an iceberg acting in combination. 
      The estimation of conditional probabilities associated with a 
load event is conducted using the program RELAN (RELiability 
ANalysis), developed at the Civil Engineering Department of the 
University of British Columbia [14].  This program implements 
standard FORM algorithms (First Order Reliability Methods) to 
calculate the probability that a "performance function" G of the 
vector of a set of random variables x is negative.  In the present 
context, in order to compute the exceedence probability of the 
load level F, the function G(x) is written as follows: 

  G(x)  =  F  -  FM(x) Rn                                                        (1) 

in which FM(x) is the maximum force developed on the structure 
due to waves, or iceberg impact, or waves and iceberg impact in 
combination, as appropriate, x denotes a set of specified random 
variables characterizing the structure, the iceberg and the wave 
conditions, and Rn is a random variable associated with model 
inaccuracy in the calculation of FM [15].   
 

The probability of the event G < 0 corresponds to the 
probability that the maximum load FM exceeds the load level F.  
In the case of an iceberg impact in the absence of waves, the 
force exceedence probability is first obtained conditional on the 
occurrence of an impact.  In such a case, the programs allow for 
the estimation of the corresponding annual risk, denoted pa, using 
the hypothesis that the events (i.e. iceberg impacts) follow a 
Poisson pulse process with a given mean rate of annual 
occurrence (events per year), denoted µ.  Thus, if the conditional 
exceedence probability of the event is pe, the annual risk is given 
as: 

  pa  =  1  -  exp(-µpe)                                                           (2) 

The mean rate of collision events, µ, has recently received some 
attention (e.g. [16]).  For the purpose of this work, µ has been 
assumed to take values ranging from 0.04 to 1.00. 
      In the case of waves alone, the force exceedence annual risk 
is directly obtained using annual maxima distributions for the sea 
state. In the case of an iceberg impact in the presence of waves, 
the force exceedence probability is first obtained conditional on 
the occurrence of an impact, so that Eq. (2)  is also needed to 
transform this conditional probability into the corresponding 
annual risk. In this case, the probability distributions for the wave 
parameters correspond to the sea state that is present at the time 
of impact, and are based on measured records of wave periods 
and heights at a specified recording interval τ, taken here as six 
hours. 
      In each of the three cases above, the maximum force FM 
developed during the event requires an appropriate mechanics 
model for its calculation.  The following sections describe, 
briefly,  such calculations for waves alone, an iceberg alone, and 
waves and an iceberg in combination. 
 

FORCES DUE TO WAVES ALONE 

An analysis is first carried out for wave loads in the absence of 
icebergs.  A simple representation of the maximum annual 
distribution of wave conditions is initially required, and a single 
parameter, the peak period T, is used here.  The maximum annual 
wave period is assumed to obey an Extreme Type I annual 
probability distribution (e.g. [2]), such that T = 18 sec 
corresponds to a cumulative probability p(T) = 0.99 (return 
period TR = 100 years); and T = 15 sec to p = 0.05 (TR = 1.05 
years).  Thus, in general,  

p(T)  =  exp[- exp(-1.8991(T - 15.5777))]                            ( 3) 

where T is in seconds.  The significant wave height Hs (in m) can 
be estimated from a formula which has been found to be suitable 
for conditions in Canadian Atlantic waters [17]: 

HS =  0.0509 T2                                                                      (4) 
 

The loads for regular waves may be obtained from an analysis 
based on linear diffraction theory.  Results are obtained using a 
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computer program WELSAS, which is based on three-
dimensional linear diffraction theory using a boundary element 
method [2].  In the case of a single fixed structure, the flow is 
described by a velocity potential Ф comprised of a component 
Фw associated with the incident waves, which is known, and a 
component Фs associated with the scattered waves, which is to be 
determined: 

Ф  =  Фw  +  Фs                                                                   (5) 

The latter satisfies the Laplace equation within the fluid region, 
linearized kinematic and dynamic boundary conditions at the still 
water surface, a radiation condition in the far field, and kinematic 
conditions at the seabed and the submerged structure surface.  
Such a potential may be represented as due to a distribution of 
'point wave sources' over the submerged surface of the structure: 

dS),x(G )(f)x(
S

S ξξ=Φ ∫                                    (6) 

where f(ξ) represents a source strength distribution function, x is 
a general point (x,y,z) within the fluid region, and the integral is 
taken over the points ξ on the submerged surface of the body, S. 
G(x,ξ) is a known Green's function and corresponds to the 
potential at the point x due to a source of unit strength at ξ.  The 
application of the boundary condition on the submerged structure 
surface gives rise to an integral equation for the unknown source 
strength distribution function f(ξ) on this surface. The submerged 
structure surface is discretized into a finite number of facets, such 
that the source distribution is approximated by point sources at 
the facet centers, and the integral equation is thereby 
approximated by a matrix equation for the source strengths.  This 
is solved to provide the source strengths, and the potentials at the 
facet centers are then obtained by a discretized version of Eq. 6.  
Finally, the pressure distribution around the structure may be 
expressed in terms of the corresponding velocity potential, and 
the force and moment components on the structure are then 
obtained by suitable integrations of the pressure distribution.  
These are used to provide the maximum horizontal force Fh, the 
maximum vertical force Fv, and the maximum overturning 
moment Mo. As input to the program, the range and number of 
wave frequencies and wave directions is required, and the 
submerged configuration of the structure is specified in a 
discretized form.  For each wave period and direction, the linear 
diffraction problem is solved to provide the various force 
components indicated above.   For regular waves of height H and 
period T, the force on the structure varies sinusoidally with 
period T, and thus is expressed as F cos(ωt), where ω = 2π/T and 
F is the force amplitude.  F is proportional to the wave height, so 
that results need only be obtained for waves of unit height.  Since 
the wave forces are ultimately required for application in a 
probabilistic model, a simple expression has been fitted to 
numerical results obtained for wave periods ranging from T = 10 
to 20 sec.  The results correspond to a water depth of 80 m, a 
water density of 1,025 kg/m3, and a structure of radius 58 m.  
Thus, for the case of regular waves alone, the maximum force 
FM = F on the structure is obtained in the form: 
 

  

F = H[-136.807  +  22.546T  -  0.593T2]                               (7) 

where F is in MN.   
The loads due to random waves may be obtained as an extension 
of the case of regular waves.  However, the height H is now 
random within a storm and obeys a Rayleigh distribution, 

p(H)  =  Rn =  1  -  exp








- 2




H

Hs

2
     for H ≥ 0                   (8) 

 
where Rn is a random variable uniformly distributed between 0 
and 1.  For a pair of random wave height and period values, H 
and T, the corresponding force may be obtained from Eq. (7). 
The resulting force F would correspond to the random individual 
values within the maximum annual storm, while what is required 
is the maximum F within that storm. Thus, the distribution for the 
maximum F depends on the storm duration τ, with the number of 
waves within that storm taken as N = 3600 τ /T, in which τ is in 
hours and T is in seconds. Results are given here for storm 
durations of 4, 8 and 16 hours. 
 

FORCE DUE TO ICEBERG COLLISION ALONE 

The force developed during an iceberg collision will vary during 
the process of ice crushing against the structure, since the area of 
contact is continuously changing and the crushing pressure 
exhibits a notable size effect (the greater the contact area, the 
lower the required pressure).  The force is also influenced by the 
damage deformation of the structure, which may have been 
designed to allow for local damage when the force exceeds a 
certain level.  Here, local damage is associated with the 
deformation or collapse of the structure in the neighborhood of 
the contact point with the iceberg.  It is quite difficult to derive 
relationships between applied pressure and structural damage 
during a situation of progressive collapse.   
The necessary background of ice mechanics and risks to offshore 
structures have been amply discussed elsewhere by Sanderson 
[18].  The present study applies such basic concepts to the 
example under consideration here, and extends the formulation to 
take account of iceberg penetration due to local structural 
damage. The size effect in ice crushing pressure is also 
considered. 

ICEBERG SHAPE AND SIZE 

It is very difficult to represent accurately the three-dimensional 
shape of an iceberg by a simple mathematical equation.  The 
approach adopted here follows that of Det Norske Veritas [11] in 
which the iceberg is assumed to be circular in plan and ellipsoidal 
in elevation, Fig. 1, with horizontal (major) and vertical (minor) 
semi-axes R and B respectively.  From statistical data for the 
Grand Banks, all the iceberg dimensions are expressed in terms 
of a single random variable L (in m) which is represented by a 
Gamma distribution, with a mean value µL = 121.60 m and a 
standard deviation σL = 56.70 m.  Other characteristic 
dimensions of the iceberg may be expressed in terms of L.  In 
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particular, the horizontal semi-axis R, and the iceberg diameter at 
the waterline D are given respectively as: 

R =  0.428 L  +  1.053 L0.63                                                  (9) 

D=  0.679 L  +  1.671 L0.63                                                (10) 
 
It can be shown that the vertical semi-axis B, and the iceberg 
height above the water, b, are related to the draft h according to: 

B  =  
h

1.608                                                                           (11) 

b  =  0.244 h                                                                         (12) 
 
The iceberg draft h is in turn related to L, except that icebergs 
capable of colliding must have a draft smaller than the water 
depth of 80 m.  Thus: 

h  =  Min 


 3.781L0.63

 
 d

                                                    (13) 

Using the specified Gamma distribution for L, Eq. (13) is used to 
obtain a corresponding distribution of the draft h.  Taking account 
of the truncation at a maximum of 80 m, the data for h have been 
represented with a Beta distribution with a minimum of  0 m and 
a maximum of 80 m, resulting in a mean draft µh = 61.35 m with 
a standard deviation σh = 12.38 m. 

ICE CRUSHING PRESSURE 
 
For different penetrations x into the ice, as shown in Fig. 1, it is 
possible to compute the area of contact as the intersection of the 
ellipsoid with the cylindrical structure of radius a.  From a 
knowledge of the relationship between ice-crushing pressure and 
area, the force F(x) may then be obtained by integration, 
assuming that the pressure is uniformly distributed over the area.  
The impact is assumed to be head-on, and the contact area is 
computed accordingly.  The possibility of eccentric impact is 
taken into account through the use of a modification factor which 
is subsequently described. 
The pressure p required to crush the ice depends on the area of 
contact A.  It is assumed that the crushing pressure p has a 
lognormal distribution, with mean mp and coefficient of variation 
Vp: 

p  =  
mp

1 + Vp
2

   exp[ ]Rn4 ln(1 + Vp
2)                           (14) 

where Rn4 has a Standard Normal distribution . 
In general, the size effect for the mean pressure mp can be written 
in the form: 

mp=  Max.


 C1 AC2

 
 po

                                                           (15) 
 

Although data on iceberg ice are scarce, the scatter in available 
data for ice in Arctic conditions [19] is reasonably well 
represented with the following values:  
 

Vp  =  0.50 
C1  =  9.0 MPa 
C2=  - 0.5                                                                      (16) 

      po  =  2.0 MPa 

with A in m2.  The value po is a lower bound for mp.  Due to 
uncertainty in ice crushing pressure for large areas A, it may be 
more appropriate to represent po by a suitable probability 
distribution.  Instead, in the present study po is taken as a 
constant.  It should be noted that the lower bound po = 2 MPa is 
reached at a contact area of about 20 m2, which is probably very 
quickly exceeded during a collision.  The value of po is not well 
defined from available data, and since it is expected to have 
marked influence on the loads developed during the collision, 
three specific values of po are studied: 2, 4 and 6 MPa. 

FORCE-PENETRATION RELATIONSHIP 

For a given penetration x due to ice crushing , Fig. 1, the force 
F(x) acting on the structure can be calculated from an integration 
of the crushing pressure p over the area of contact A(x): 

A(x)  =  2a⌡⌠
   0

 a
 
  s(x, ψ) dψ                                                    (17) 

F(x)  =  2a p(x)⌡⌠
   0

 a
 
  s(x, ψ) cosψ dψ                                   (18) 

where the angles ψ and α are shown in Fig. 1, and s is the height 
of the contact area corresponding to the angle ψ.  In general, it is 
found that the iceberg will be stopped after a few meters of 
penetration. The relationship F(x) may thus be linearized and,  in 
the present case, this linearization is achieved by replacing the 
curve F(x) with a straight line fit to results for penetrations up to 
2 m. 

IMPACT VELOCITY 

       The iceberg impact velocity V is influenced by the prevailing 
current, wind, and waves.  For simplicity, the impact velocity V 
in calm water (iceberg alone, no wind or waves) is taken here to 
be equal to the current velocity U: 

V  =  U                                                                                 (19) 

This approximation is only needed with respect to the statistical 
descriptions of V and U, and is reasonably consistent with 
dynamic models of iceberg drift (e.g. [20] and [21]) when applied 
in the absence of waves and wind.  Following data from Det 
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Norske Veritas [11], the current U is assumed to possess a 
lognormal distribution, with a mean µU = 0.32 m/sec and a 
standard deviation σU = 0.27 m/sec. 
 

MAXIMUM FORCE 

In calm water, the calculation of the maximum force FM is 
implemented through an energy balance.  The iceberg will be 
stopped when its kinetic energy is fully dissipated through ice 
crushing and structural damage deformation.  Thus, this energy 
balance may be expressed as: 

1
2  M (1 + Cm) V2 = ⌡⌠

   0

 xc
 
  F(x) dx  +  ⌡⌠

   0

 xd
 
  F(x) dx                (20) 

where the iceberg mass M has been augmented by the added-
mass coefficient Cm accounting for hydrodynamic effects.    The 
first term in the right-hand side corresponds to the energy 
dissipated through ice crushing up to a penetration xc, obtained 
from the force-penetration relationship.  The second term 
corresponds to the energy dissipated through the local structural 
damage penetration xd, and is taken into account only when the 
force exceeds a minimum force Fo required to produce damage. 
The relationship between force and damage penetration has been 
estimated on the basis of a previous structural analyses of 
reinforced concrete elements at ultimate load.  For the particular 
ice wall considered here, the results can be represented by a 
linear relationship up to a damage penetration of 1.5 m, according 
to 

F(x) = Fo  +  1567 xd Rn5  (MN)                                        (21) 

with Fo = 610 MN.  To account for the uncertainty in this 
estimate, the random variable Rn5 is introduced, and is assumed 
to possess a lognormal distribution with a mean of 1 and a 
standard deviation Vf. 
Given the geometry of the iceberg, its impact velocity, and the 
crushing pressure parameters, Eq. (20) can be solved iteratively 
to obtain the penetrations xc and (if damage occurs) xd.  Once 
these are found, the maximum force FM is obtained from the 
force-penetration relationship. 
       In practice an iceberg is likely to impact the structure in an 
eccentric manner.  The influence of eccentric collisions has been 
considered, for example, by Bass, Gaskill and Riggs [22] and 
Salvalaggio and Rojansky [23].  In order to account for the 
possibility of eccentric collisions, the maximum force FM 
calculated in the manner described is multiplied by an 
eccentricity reduction factor Ke ≤ 1.0.  Data from [23] are 
utilized to express Ke as 







 π

=
2

R
cosK 6n228.0

e                                                    (22) 
 

in which Rn6 is a random variable with a uniform distribution 
between 0 and 1.  Thus, Ke varies from 1 for a head-on collision 
to 0 in the limit of the iceberg just making glancing contact with 
the structure. 
       The added-mass coefficient of an iceberg at impact, Cm, is 
determined by solving the boundary value problem corresponding 
to an iceberg undergoing small amplitude oscillations in 
otherwise still water.  A description of the calculation procedure 
has been given by Isaacson and Cheung ([24], [25]).  In general, 
the added-mass is frequency dependent, although it is customary 
to use a single value (usually the zero frequency value) when 
treating the iceberg impact problem.  The added-mass of the 
iceberg depends on the submerged geometry, the water depth and 
the submerged geometry of any neighbouring structure (and thus 
it is a function of the iceberg distance from any such structure).  
The zero-frequency added-mass is estimated here for a range of 
iceberg parameters, both in open water and when in contact with 
the structure.  However, for the range of iceberg sizes of interest, 
the added-mass is not strongly influenced by the proximity to the 
structure.  A simple expression has been derived from numerical 
results obtained over a range of conditions: 

Cm=0.088


D

d  


h

d    +0.639


h

d    - 0.100


D

d    + 0.223        (23) 
 

FORCE DUE TO ICEBERG COLLISION AND WAVES 

      Attention is now given to an iceberg collision in the presence 
of waves.  The preceding descriptions of iceberg shape and size, 
crushing pressure, and added mass continue to apply.  However, 
the maximum force on the structure is altered, partly because the 
impact velocity is changed, and partly because the wave force on 
the iceberg influences the iceberg force on the structure.  
Furthermore, the description of wave parameters must now 
reflect the sea state at the moment of collision, so that more 
commonly occurring wave conditions should be accounted for.  
These aspects are now considered further. 

WAVE PARAMETERS 
 
For convenience, the description of more commonly occurring 
wave conditions is assumed to derive from measurements based 
on a specified recording interval, taken here as 6 hours.  The 
corresponding probability distribution of the wave period T can 
be obtained from the distribution of the annual maximum period, 
given in Eq. (3), by raising the latter to the power of 1/N, where 
N is the number of such recording intervals per year (N=1460). 
The calculation details for the distribution of T corresponding to 
individual intervals is discussed by Foschi et al. [26].  

IMPACT VELOCITY 

Although data for the open water drift velocity of icebergs is 
generally available, the actual velocity may differ from such data 
when storm waves are present and when the iceberg approaches 
the structure.  Firstly, the waves give rise to a wave drift force 
which causes an increase in the iceberg velocity.  This is likely 
not adequately accounted for in iceberg drift data, since such data 
generally pertains to commonly occurring wave conditions, 
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whereas design waves with a return period of order 100 years are 
of interest here.  Secondly, since the wave drift force and iceberg 
added mass vary with distance from the structure, the iceberg 
velocity may be further modified through its equations of motion 
as it approaches the structure.  Overall, it is expected that the 
impact velocity V depends on the current velocity U, the iceberg 
dimensions (characterized by its waterline diameter D and draft 
h) and the prevailing wave conditions characterized by Hs or T. 
  A simple formulation for the iceberg impact velocity V may be 
developed by taking V to be proportional to the iceberg drift 
velocity in open water, denoted Vo, and adopting a suitable 
expression for the latter.  Following Isaacson [8], an expression 
for Vo may be developed by equating the wave drift force to the 
current drag, taking the wave drift force coefficient to be 
proportional to D/L [8], where L the wave length, and using Eq. 
(4) to relate wave height and wave period.  The above approach 
gives rise to the following expression for the impact velocity V: 

V  =  U  +  α gT 
D
h                                                   (24) 

where α is a constant and g is the acceleration of gravity. The 
value α has been estimated by examining previous results and 
data for the open water velocity Vo (e.g. Lever and Sen, [5]) and 
using a numerical model to relate the impact velocity V to the 
open water velocity Vo.  Thus, a wave diffraction-radiation 
analysis has been carried out for a series of conditions 
corresponding to the iceberg approaching the structure, using an 
extension to the computer program WELSAS.  This provides 
solutions to the two-body diffraction-radiation problem of a 
floating iceberg approaching a fixed structure, as well as to the 
iceberg's equations of motion, and has been described by 
Isaacson [8].  For each such condition, the submerged surfaces of 
the structure and iceberg are discretized into a number of 
quadrilateral facets for a boundary element method analysis, in 
order to obtain the trajectory of the iceberg and the impact 
velocity V. 

Overall, the foregoing procedure has indicated that Eq.(24) 
should be suitable for the conditions of interest here with the 
constant α = 0.003.   

MAXIMUM FORCE 

In the presence of waves, the iceberg force on the structure, F(x), 

is influenced in part by the wave force on the iceberg, Fw
(i) ,    

Fig. 2. Thus, the calculation of F(x) is carried out by a direct 
integration of the equation of motion of the iceberg, rather than 
by a simple energy balance, 

M(1 + Cm) ẍ   =  - F(x)  +  Fw
(i)                                         (25) 

with initial conditions x = 0 and xú   = V at t = 0, and an over-dot 

denoting a derivative with respect to time.  The force Fw
(i)  of the 

waves on the iceberg is expressed as 

Fw
(i)   =  F*w

(i)  cos(ωt - ε)                                                  (26) 
 

 

where the angular frequency ω = 2π/T, and the phase angle ε 
varies between 0 and 2π. 

The wave force amplitude F*w
(i)  has been calculated for a range 

of iceberg and wave parameters using an extension to the 
computer program WELSAS.  The combined submerged surface 
of the iceberg in contact with the structure is discretized into a 
number of quadrilateral facets, and the magnitudes and phases of 
forces acting on the iceberg and structure are each computed by 
suitable integrations of the hydrodynamic pressure acting on the 
combined configuration.  Since this approach in effect treats the 
iceberg and structure as a single contiguous body, rather than as 
two bodies in close proximity, no particular numerical difficulties 
are encountered.  The numerical results are expressed as follows, 

F*w
(i)   =  0.0172  h 

D2

T2  H CF
(i)                                          (27) 

where F*w
(i)   is in MN, and H is the wave height in m. Details on  

the force coefficient CF
(i)  are given in Foschi et al. [  ].  

As already indicated in Fig. 2, the iceberg force on the structure, 
F(x), is a nonlinear function of x.  However, the iceberg will be 
stopped at values of x for which the function F(x) can be 
linearized as follows, 

F(x)  =  K x                                                                          (28) 

where K is the initial slope of the force-penetration relationship.  
With this linearization of the force F(x), the equation of motion 
can be easily integrated in closed form.  Of particular interest is 
the time to at which the velocity xú   first vanishes (iceberg 
stopped), and the corresponding maximum penetration.  The 
maximum iceberg force on the structure is obtained from the 
force-penetration relationship up to the point of maximum 
penetration. 
Given the oscillatory character of the wave force on the iceberg, 

Fw
(i) , this force sometimes pushes the ice mass forwards and 

sometimes backwards.  The phase angle ε, which controls the 
effect of this force at time t = 0 (i.e. at the beginning of the 
collision), therefore has a substantial importance in the 
calculation of the exceedence probability.  The FORM 
calculations are done conditional on specific values of the phase 
angle ε, with the total exceedence probability then calculated by 
integration over all phase angles from 0 to 2π.  The integration is 
facilitated by the simple probability density function of the 
uniform distribution for ε, using a Gaussian scheme with five 
integration points. 

MODIFICATIONS TO PROBABILITY DISTRIBUTIONS FOR U AND L 

The statistics for U and L correspond to all icebergs in open 
water. However, these statistics differ from those corresponding 
to impacting icebergs, since an iceberg's speed and size influence 
its probability of collision with the structure.  Sanderson [18] has 
investigated this difference (see also Maes and Jordaan, [12])  
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and has shown that the speed and size probability distributions 
for colliding icebergs can be obtained as modifications of the 
corresponding distributions of all icebergs in open water.  An 
application of Bayes' theorem enables the expressions of the 
modified probability density functions for U and L to be given as 
follows: 

f*(U)  =  f(U) 





U

U
�                                                              (29) 

f*(L)  =  f(L) 






a + L

a + L
�                                                         (30) 

in which f(U) and f(L) are the corresponding open water 

probability density functions, and U
�

  and L
�

  are the corresponding 
mean values.  It is seen that Eqs. (29) and (30) skew the original 
distributions so as to increase the chances of collision for bigger 
and faster icebergs. 

RESULTS 

Table 1 shows a summary of the statistical parameters that have 
been used for the various specified random variables, except that 
the parameters for the iceberg draft h are determined by those of 
L.  In order to verify the load combination factors specified in the 
Code, it is necessary to use these parameters to obtain the wave 
loads for an annual exceedence level of 10-2 and both the iceberg 
alone and the iceberg plus waves loads at an annual exceedence 
level of 10-4. 
Results for waves alone, at an exceedence probability of 10-2   are 
shown in Table 2 for different storm durations.  Forces for 
iceberg collision alone, at exceedence probabilities of 10-2 and 
10-4 , are shown in Table 3.  This Table indicates the influence of 
the annual exceedence probability, the iceberg arrival rate ν, the 
modifications to the U and L distributions as described in Eqs. 
(29) and (30), and the ice crushing pressure threshold po.  The 
Table indicates that the iceberg collision forces are strongly 
dependent on all four of these factors.  In particular, it is apparent 
that the modifications to the distributions for U and L have a 
marked effect on the collision forces, and must be taken into 
account when the goal is to estimate the level of those forces for 
design. 
Finally, Table 4 shows the results for an iceberg collision in the 
presence of waves. The annual exceedence probability is 10-4, as 
required by the Code.  Once more, the Table indicates the 
influence of the iceberg arrival rate ν, the modifications to the U 
and L distributions as described in Eqs. (29) and (30), and the ice 
crushing pressure threshold po.  As in the case of an iceberg 
collision alone, all these factors have a marked influence on the 
maximum combined load.  The results were obtained for a wave 
measurement recording interval τ = 6 hours, corresponding to N 
= 1,460.  In fact, the use of different values of recording interval 
was examined, and found not to affect the results noticeably. 
 

LOAD COMBINATION FACTORS 

The load combination factor γ is used in the CSA Code to 
determine a design value for the load due to a companion 
frequent environmental process (waves) acting in combination 
with a rare environmental event (iceberg collision).  The load 
combination factor is defined in the Code in relation to the 
combined design load effect: 

E  =  Er  +  γEf                                                                    (31) 

in which E is the combined load with an annual exceedence 
probability of 10-4, Er is the iceberg alone load with an annual 
exceedence probability of 10-4, and Ef is the wave load with an 
annual exceedence probability of 10-2.  Thus the factor γ aims to 
achieve a combined wave-iceberg load with an annual risk of   
10-4 , just as it would be required in the case of an iceberg alone. 
The CSA code recommends: 
 
γ  =   0.8 for events stochastically dependent, and 
γ  =   0.4 for events stochastically independent. 
 
and that iceberg impact in the presence of waves should be 
considered stochastically independent (i.e. the Code recommends  
γ = 0.4). 
 
Values of  γ can be calculated from the results given in Tables 2, 
3 and 4 and are shown in Table 5 for a storm duration of 8 hours. 
Differences for other durations are very small.  Although the 
actual loads are substantially influenced by the iceberg arrival 
rate, the ice crushing pressure threshold po and the application of 
the distribution modifications according to Eqs. (29) and (30), the 
results in Table 5 suggest that the load combination factor itself is 
much more stable, and essentially only exhibits an effect of po.  
Since the iceberg collision force is interrelated with the effect of 
the waves, the combined event should be classified as dependent.  
However, the corresponding load combination factor of 0.80 is 
very much on the conservative side.  Rather, the value of 0.40 can 
be conservatively applied for a range of conditions. Thus, this 
work confirms the recommendation in the current CSA code,  
except that  the event should be classified as a dependent event.  

CONCLUSIONS 

The analysis of loads due to an iceberg collision during a storm is 
presented.  Mechanics models have been developed to provide 
forces on an offshore structure due to (i) waves alone, (ii) an 
iceberg alone, and (iii) the combination of waves with an iceberg.  
These have been combined with a reliability framework in order 
to obtain forces corresponding to specified risk levels. 
The maximum combined load on the structure is associated with 
a number of factors.  There is a significant increase of iceberg 
impact velocity due to the presence of waves.    Likewise, the 
presence of the structure influences the wave force on the 
iceberg, which in turn influences the iceberg force on structure.  
One objective of this study has been to examine and recommend 
suitable load combination factors for combined iceberg-wave 
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loads on large offshore structures.  At present, the CSA Code 
recommends that iceberg impact and waves should be considered 
stochastically independent, with a load combination factor γ = 
0.4.  The present study suggests that iceberg impact and waves 
should instead be considered stochastically dependent,  but that 
the factor 0.40 can be conservatively used for a range of 
conditions. 
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Table 1   Random Variables Statistics 
 

 
 
 
Table 4   Wave-Iceberg Collision Forces 

Variable Distribution Characteristics 

Iceberg length, L Gamma µ = 121.60 m 
σ = 56.70 m 

Iceberg draft, h Beta µ = 61.35 m 
σ = 12.38 m 
Min. = 0.00 m 
Max. = 80.00 m 

Current velocity, U Lognormal µ = 0.32 m/sec 
σ = 0.27 m/sec 

Wave period, T (annual 
maximum) 

Extreme 
Type I 

µ = 15.89 sec 
σ= 0.67 sec 

Rn1, associated with model 
uncertainty 

Normal µ = 1.0 
σ= (input) 

Rn4, associated with ice 
crushing pressure p 

Normal µ = 0.0 
σ= 1.0 

Rn5, associated with slope 
of load-damage 
deformation relationship 

Lognormal µ = 1.0 
σ= (input) 

Rn6, associated with 
collision eccentricity 

Uniform  Min. = 0.0 
Max. = 1.0 

Rn7, associated with 
Rayleigh distribution for 
wave height H 

Uniform Min. = 0.0 
Max. = 1.0 

Iceberg 
collision 
arrival 

rate  
(1/year) 

U, L 
distribution 
adjustment 

Maximum combined wave-
iceberg load FM (MN)  

(annual exceedence probability  

10-4) 

  po = 2 
MPa 

po = 4 
MPa 

po = 6 
MPa 

0.04 No 2,305 3,120 3,797

0.08 No 2,592 3,604 4,394

0.20 No 3,088 4,331 5,287

1.00 No 4,175 5,880 7,189

0.08 Yes 4,220 5,952 7,281
 

   

    Table 2  Wave Forces 

     Table 3   Iceberg Collision Forces 

Iceberg 
collision 
arrival 

rate  
(1/year) 

U, L 
distribution 
adjustment

Maximum iceberg force FM (MN)

(annual exceedence probability  

10-4) 

  po = 2 
MPa 

po = 4 
MPa 

po = 6 
MPa 

0.04 No 1,605 2,276 2,792

0.08 No 1,932 2,740 3,360

0.20 No 2,425 3,442 4,224

1.00 No 3,484 4,952 6,080

0.08 Yes 3,588 5,106 6,270

Maximum wave force FM (MN) Annual 
exceedence 
probability 

Storm 
Duration 

4 hrs. 

Storm 
Duration 8 

hrs. 

Storm 
Duration 16 

hrs. 

10-2 2,625 2,745 2,825
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Table 5  Load Combination Factors  
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Figure 1  Iceberg Geometry and Gravity Platform 
 

Iceberg 
collision 
arrival 

rate 
(1/year) 

U, L 
distribution 
adjustment 

Load combination factor γ 

 

 po = 2 
MPa 

po = 4 
MPa 

po = 6 
MPa 

0.04 No 0.26 0.31 0.37

0.08 No 0.24 0.31 0.38

0.20 No 0.24 0.32 0.39

1.00 No 0.25 0.34 0.40

0.08 Yes 0.23 0.31 0.37
 10 

 
 
 
 
 
 

 
 
 
 
Figure 2   Wave-Iceberg Dynamic Equilibrium 
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Fw
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